As an example, consider that we have an evidence D and 3 possible hypothesis h1, h2 and h3. The posterior probabilities for those hypothesis are P( h1 | D ) = 0.4, P( h2 | D ) = 0.3 and P( h3 | D ) = 0.3. Giving a new observation, h1 classifies it as true and h2 and h3 classify it as false, then the result of the global classifier (BMA) would be calculated as follows:

Basic BMA Bibliography
[1] J. A.and Madigan D. Hoeting and A.E.and Volinsky C.T. Raftery. Bayesian model averaging: A tutorial (With Discussion). Statistical Science, 44(4):382--417, 1999. (Download)
Basic BMA Researchers
This was lovelyy to read
ReplyDelete